
Extending Summation Precision for Network Reduction Operations

George Michelogiannakis, Xiaoye S. Li, David H. Bailey, John Shalf
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

Email: {mihelog,xsli,dhbailey,jshalf}@lbl.gov

Abstract—Double precision summation is at the core of
numerous important algorithms such as Newton-Krylov meth-
ods and other operations involving inner products, but the
effectiveness of summation is limited by the accumulation of
rounding errors, which are an increasing problem with the
scaling of modern HPC systems and data sets. To reduce the
impact of precision loss, researchers have proposed increased-
and arbitrary-precision libraries that provide reproducible
error or even bounded error accumulation for large sums,
but do not guarantee an exact result. Such libraries can also
increase computation time significantly. We propose big integer
(BigInt) expansions of double precision variables that enable
arbitrarily large summations without error and provide exact
and reproducible results. This is feasible with performance
comparable to that of double-precision floating point sum-
mation, by the inclusion of simple and inexpensive logic into
modern NICs to accelerate performance on large-scale systems.

I. INTRODUCTION

Technology scaling and architecture innovations in recent
years have led to larger datasets and extreme parallelism for
high performance computing (HPC) systems. It is projected
that parallelism will increase at an exponential pace in order
to meet the community’s computational and power efficiency
goals [1]. This translates to operations, such as summations,
with a larger number of operands that are also distributed
over an increasing number of nodes. The sheer scale of these
systems threatens the numerical stability of core algorithms
due to the accumulation of errors for ubiquitous global
arithmetic operations such as summations [2].

At the present time, 64-bit IEEE floating-point arith-
metic is sufficiently accurate for most scientific applica-
tions. However, for a rapidly growing body of important
scientific applications, higher numeric precision is required.
Among those applications are computations with large, rel-
atively ill-conditioned linear systems, multi-processor large-
scale simulations, atmospheric models, supernova simula-
tions, Coulomb n-body atomic system studies, mathematical
physics analyses, studies in dynamical systems, and compu-
tations for experimental mathematics. Recent papers discuss
numerous such examples [3], [4], [5], [6], [7].

Perhaps the most common instance where extra precision
is needed is large summations, particularly when it involves

This work was supported by the Director, Office of Science, of the U.S.
Department of Energy under Contract No. DE- AC02-05CH11231.

both positive and negative terms, so that catastrophic can-
cellation can occur. Even if all terms are positive, round-
off error when millions or more terms are summed can
significantly reduce the accuracy of the result, especially
if the summation involves large and small numbers. This is
important even for simple widely-used operations based on
summations, such as matrix multiplications and dot products.

As an example of a real-world application where accurate
summation is important, Y. He and C. Ding analyzed anoma-
lous behavior in large atmospheric model codes, wherein
significantly different results were obtained on different
systems, or even the same system with a different numbers of
processors [7]. As a result, code maintenance was an issue,
since it was often difficult to ensure that a “bug” was not
introduced when porting the code to another system. While
a certain degree of non-reproducibility is to be expected
since weather and climate calculations are fundamentally
chaotic, these These researchers found that almost all of
the numerical variations were eliminated when two key
inner summations were converted to use double-double (DD)
arithmetic (approximately 31 decimal digits) [7]. Another
concrete example is complex dynamical systems, where
precision loss has been quoted as the main limitation [4].

Currently, researchers generally presume that nothing can
be done to ameliorate such problems and are often concerned
with bounding errors from precision loss to acceptable
levels [8], [9], [10], [11], [12], [13]. A few have tried higher-
precision arithmetic using software facilities, with relatively
good success, although computational time for this software
is often an issue [14], [15]. In the atmospheric model case
mentioned above, researchers employed DD arithmetic in
the summations, which uses two double-precision variables
to extend precision [14], and found that almost all numerical
variations were eliminated. Others have even resorted to
quad-double arithmetic [3], [14].

In modern HPC systems with large datasets, summations
and other operations are often performed on operands dis-
tributed across the network [16], [1]. Currently none of
the high-precision software libraries support parallel sum-
mations. Balanced-tree summations and other sorting or
recursion algorithms that reduce round-off error accumu-
lation [10], [15], [9], [12] are only efficient within nodes
because they would incur an impractical amount of system-
wide data movement for distributed operations. This leaves
distributed operations prone to precision loss.



There are two natural ways to implement distributed
summations with provably minimum data movement. One
way is for nodes to send their partial sum (a single variable)
to a single node to perform the summation and generate a
single result. This only occupies a single node’s processor
but completion time grows linearly with the number of
operands and can also create network hotspots [17]. The
other approach (used in most MPI implementations) per-
forms the summation in a tree fashion, where each node
adds a number of operands and passes the partial sum (also
a single variable) to the next level of the tree. This approach
requires logarithmic time to complete, but the latencies of
each level of the tree greatly impact performance at scale as
it incurs multiple communication delays between network
interface cards (NICs) and local processors. Software im-
plementations incur potentially long context switch penalties
just to have processors at each node add a few numbers
together, and may also cause these intermediate processors
to wake up from potentially deep sleep state just to perform
an infinitesimal amount of work.

Earlier work proposes NIC-based reductions in Myrinet
networks [18] by modifying the drivers (and therefore using
the host processor’s processing power), and showed that
NIC-based reduction can yield performance gains even with
as few as eight nodes [19]. Further work evaluated conduct-
ing reduction operations exclusively in NICs and concluded
that doing so increases efficiency, scalability and reduces
execution time compared to performing the computations in
processors [20]. This is made possible by using the pro-
grammable logic in modern NICs [20]. However, this work
only applied this method for double-precision variables due
to the complex data structures and computation demands of
arbitrary-precision libraries and the limited processing power
of programmable logic in NICs. Even with double-precision
variables, the low computational power of programmable
logic can pose a significant performance issue [20]. The
alternative, adding complex dedicated hardware to NICs
for increased or arbitrary precision computations, increases
design risk and complexity.

In this paper, we make the case that using a very wide
integer to provide an uncompressed and exact encoding of
the complete numerical space that can be represented by a
double-precision floating point number, which we call big
integer (BigInt), is well-suited for distributed operations. We
demonstrate that BigInts incur no precision loss and can be
productive and efficient to use in distributed summations,
such as reduction operations, without increasing communi-
cation latency compared to double-precision variables. In
fact, this approach offers the promise of actually accelerating
system-wide summations used by inner products for methods
such as Newton-Krylov, because integer adders can be
easily incorporated in NICs at speeds comparable to modern
floating point units (FPUs), to avoid waking up and context
switching processors. Therefore, we are able to move com-

52 bits

Mantissa

11 bits

Exponent

Sign

Double-precision variable

64 bits

Mantissa

15 bits

Exponent

Sign

Long double-precision variable (x86)

52 bits

Mantissa

11 bits

Exponent

Sign

Double-double variable (two double-precision variables)

MantissaExponent

Figure 1: Double, long double and double-double variables.

putation from the processor to the NIC without any precision
or performance loss. This was previously possible only
with double-precision variables due to the complex internal
structures of arbitrary-precision libraries. Even though the
size of a BigInt variable is 2101 bits—33× larger than a 64-
bit double-precision variable—we observe insignificant loss
in communication delay due to the fixed latency costs and
packet overhead bytes in modern large-scale networks [21].
Therefore, BigInts readily apply to network operations and
can be combined with past work on local-node computations
that uses sorting and recursion or alternative wide fixed-
point representations with dedicated hardware support [22],
[23], [15], in order to provide reproducible system-wide
operations with no precision loss.

II. BACKGROUND AND RELATED WORK

The format of double-precision variables is set by the
IEEE 754 standard [24] and is shown in Figure 1. For
double-precision variables, the total number of bits is 64,
including the most significant bit which is the sign. The
mantissa includes a silent bit at its most significant (53rd)
position, which is 1 if the exponent is non-zero. Double-
precision variables with a zero exponent are considered
denormalized and are used to fill the gaps in the numbers
that double-precision variables can represent close to zero. A
denormalized double-precision variable encodes the number:

DenormalizedV alue = (−1)sign × 0.Mantissa× 2−1022

If the exponent is non-zero, the number is considered
normalized and a bias of -1023 is applied to the exponent
value. Therefore, an exponent value of 50 represents an
actual exponent of 50 − 1023 = −973. This way, double-
precision variables can represent numbers with negative
exponents. The decimal value of a normalized double is:



NormalizedV alue = (−1)sign × [1 +Mant51(
1

2
)+

Mant50(
1

4
) + ...+Mant0(1/2

52)]× 2Exp−1023

Normalized doubles encode numbers in the range:

2−1022 ≤ |V alue| ≤ (2− 2−52)× 21023

However, because of the limited mantissa bits, double-
precision variables cannot represent all numbers in the
above range [4]. In addition, operating on numbers that
have significantly different exponent values causes bits to
be dropped. For example, adding the numbers 2N and 2M

where N >= M+53 causes the latter number to be dropped
because the 53 mantissa bits are not enough to retain both
numbers. Even if the smaller number is not small enough
to be fully discarded, it may have to be partly discarded for
the same reason, or the result may require more than 53
mantissa bits [4]. Such precision loss is hard to predict in
many applications and can appear with just two operands.
In a large summation this error accumulates in every sum
of two numbers and therefore in a summation with millions
or billions of operands the error may rise to unacceptable
levels [3], [7], [5], [6].

Double-precision variables are fully supported in hard-
ware with dedicated FPUs in modern processors [25]. They
also include special values to represent infinity and a result
that is not a number (NaN), as well as exceptions to
set variables to those values when appropriate [24], [26].
Modern architectures include support for “long double”
variables. In the IEEE 754 standard [24], this is referred to
as double-extended precision for which the byte width is 10
and translates to 19 or 20 decimal digits. The implementation
of these variables depends on the programming environ-
ment and system architecture. In an x86 architecture long
doubles are 80-bits long, with 64-bit mantissas and 15-bit
exponents [27]. x86 processors include dedicated registers
with this format, but the extra precision is lost once a long
double variable is written back to memory.

In the past 10 years or so, high-precision software pack-
ages have been produced which typically utilize custom
datatypes and operator overloading to facilitate conversion.
One example is the QD package [14] which provides DD
variables, where each 16-byte variable is the unevaluated
sum of two 8-byte doubles of which the first consists of
the “leading” digits and the second the “trailing digits” of
the format’s value. That is, the first double contains the best
64-bit double-precision approximation to the answer, and
the second double contains the difference between the exact
answer and the first double. Similarly, a quad-double number
is an unevaluated sum of four IEEE doubles. However, while
such packages offer easy-to-use high-level interfaces, they
still offer a limited amount of precision.

2101 1076
Sign

Positive exponent bits Negative exponent bits

Position 1076 corresponds to zero exponent

Figure 2: A BigInt consists of 2101 bits. Bit positions cor-
respond to an exponent after a bias of 1076. Positions right
of 1076 correspond to negative exponents. For example,
position 1000 corresponds to exponent 1000−1076 = −76.

For arbitrary precision, packages such as ARPREC [28]
and GNU GMP [29] are available. Other packages offer
guarantees on the order of operations and rounding (since
there is no standard) [30]. Inevitably, these packages sacri-
fice speed and memory due to large arrays used in the inter-
nal representations and lack of hardware support. Formats
with variable-length mantissas have also been proposed,
such as IEEE 854 [31]. Such formats are similar to double-
precision variables because they use mantissa and exponent
fields, but they also introduce additional complexity for op-
erations and exception handling that make hardware support
costly. Finally, wide fixed-point representations similar to
BigInts have been used in hardware accumulators for local-
node summations [22], [23], [15]. BigInts extend this work
by applying this concept on distributed summations.

We found that existing software solutions are usually
slow for most physical modeling and simulation codes,
and the precision provided by DDs or quad-doubles are
insufficient, especially for much larger simulations to come.
A DD summation requires approximately 20 operations,
all performed in processor registers, which results in an
approximately 2× to 5× slowdown compared to double-
precision variables [14]. This slowdown becomes worse
when using arbitrary-precision packages. As an example,
ARPREC is approximately 2.5× to 4.5× slower than DD
multiplication on a Sun Ultra 167 MHz processor [28],
[14]. Alternative algorithms use sorting, recursion, or other
computation or data movement overhead to provide exact
results or with tight error bounds, as well as reproducibil-
ity [15], [10], [9]. Due to their overhead, such algorithms
are only practical within nodes. Because of the performance
tradeoff, some researchers settle with bounding or predicting
the computation error [8], [9], [10], [11], [12], [13].

III. DESCRIPTION

A. Big Integer Variables

Figure 2 illustrates the format of a BigInt variable. Essen-
tially, BigInt variables remove the exponent field and expand
the mantissa such that each bit’s location corresponds to an
exponent value. To represent the same number space as the
IEEE double-precision format, BigInt variables need to be
2101 bits since the 11-bit exponent field’s value ranges from
0 to 2048, and the exponent defines the value of the most



5263

MantissaExp
Double 
variable

BigInt
variable

1076 + Exp - 531076 + Exp

Plus silent bit

S
 i
g
n

2101 bits

64 bits

Figure 3: A double-precision variable maps to a BigInt by
inserting the most significant bit of the mantissa (the silent
bit if set) in the position specified by the exponent. For
example, an exponent of 1000 encodes an actual exponent
of −23 after applying the −1023 bias. Therefore, the silent
bit is inserted in position 1076−23 = 1053. The rest of the
mantissa is inserted in adjacent less significant positions.

significant (silent) mantissa bit. Thus, the lowest exponent
value BigInt needs to represent is the lowest value of the
exponent field (−1022) minus the number of mantissa bits
(53), for a total of −1075. BigInt variables also have a sign
bit which we place in the least significant position.

Like integers, BigInts are an uncompressed representation
and therefore can exactly encode the full range of real
numbers in their number space. In other words, there is no
gap in the range of numbers that are expressible by BigInts.
In addition, BigInts do not introduce any precision loss.
Therefore, they are well-suited for very large summations.

Figure 3 shows how a normalized double-precision vari-
able maps to a BigInt. To convert from a denormalized
double, the most significant bit of the double’s mantissa
is inserted in position 53 (corresponding to exponent value
−1022). This does not overwrite the sign bit of BigInt
because denormalized floats do not have a silent bit.

Converting the summation result from a BigInt back to a
double, long double, or DD variable inevitably causes the
least significant asserted bits to be dropped if the distance
between the leftmost and rightmost asserted bits in the
BigInt is more than the length of the mantissa of the variable
the BigInt is converted to. For example, when converting to
a double-precision variable a BigInt with asserted bits at
locations 100 and 10, the least significant bit will inevitably
be dropped because 100− 10 > 53. If this precision loss is
of concern to the application, programmers can retain BigInt
or use another wide fixed-point for local-node summation
similar to past work [22], [23], [15], or use any of the
higher-precision formats or libraries such as recursion and
sorting methods, ARPEC, QD, and GMP [28], [14], [29],
[15], [10], [9]. It is key to realize that the conversion back to
lower-precision formats discussed above is performed only
for the final result or for local node processing, if at all.
The final result is guaranteed to be accurate as long as all
arithmetic is performed with BigInt precision. Performing
the entire operation with precision less than BigInt may

produce an entirely different result due to precision loss in
every summation of two numbers, as discussed in Section II;
this effect accumulates over the course of large summations.
This precision loss can result in the most significant bits of
the result, the bits well within the range of even double-
precision variables, to differ compared to the result produced
by BigInt because BigInt was able to correctly and exactly
capture the contributions of all operands without losses.

The simplicity of BigInts enables fast and accurate nu-
merics for software implementations and requires only sim-
ple logic for hardware implementations for large summa-
tions [22], [23]. Very little additional memory is required
because only partial sums are projected to BigInt, instead
of all operands, and only over the network for distributed
operations. BigInt variables can be treated as long integers
for addition, multiplication and division, even though they
represent floating point numbers. Adding two BigInts can
be accomplished with simple and inexpensive integer adders
in a sequential manner; an adder of N bits length requires
2101

N
cycles. Therefore, in order to match the latency of a

highly-optimized FPU in modern Intel processors which has
a 5-cycle latency [27], the adder width needs to be 421 bits.
This makes adding hardware support for BigInts feasible
and more likely to operate at comparable speeds to the node
processors, in contrast to more complex libraries that also
offer arbitrary precision.

BigInts of all 0s but with a sign bit of 1 represents “not a
real number” (NaN). A value of all 1s refers to infinity (Inf),
used for numbers outside of the representable number space.
In this case, the sign bit distinguishes between positive and
negative infinity, similar to IEEE 754 [24], [26]. Setting a
BigInt to infinity or NaN is done by the hardware logic
through simple checks without the need for exceptions, as in
the IEEE 754 format. For example, the result of a summation
is infinity if the addition of the most significant bits of two
BigInts produces a carry. Similarly, in multiplications, the
resulting BigInt is set to infinity if the result is wider than
the BigInt. A BigInt of all 0s is the number 0.

B. Applicability to Network Operations

BigInts are good candidates for network-wide operations,
such as MPI reductions where communication follows a tree-
like fashion and every node sums the operands it receives
and then transmits the partial sum (a single number) to
the next level of the tree to produce a single result [32],
[33], [34]. That is because the additional bits do not have a
noticeable effect in communication delay for a small number
of operands, as we show in Section V-D.

Past work has shown that performing computation in the
NICs during reduction operations increases both scalability
and consistency with speedups of up to 121% [20]. However,
this has only been applied to double-precision variables
because of the complex data structures of libraries with
arbitrary precision and the limited programmable logic in



terms of both area and clock frequency in modern NICs [20].
For instance, Elan3 in Quadrics QsNet provides a user-
programmable, multi-threaded, 32-bit, 100MHz RISC-based
processor with 64 MB local SDRAM, originally targeted for
communication protocol modifications [35]. This processor
is an order of magnitude slower than the multi-GHz node
processors. Similar work which implemented the compu-
tation logic in software drivers in a Myrinet network [18]
showed that NIC-based reductions can be preferable to host-
based (serial) reductions with as few as eight nodes [19].

The only way to offer high-speed computation in NICs
without BigInts is to add dedicated high-speed floating-
point computation hardware to NICs. The power and area
consumed by a fully functional double-precision adder is
substantial. In addition, including a full floating point into
the NIC increases design complexity to a point that drasti-
cally increases design risk for a very specialized function.
An example of the simplest double-precision FPU from the
Tensilica design library requires on the order of 150,000
gates [36]. Even though FPU units support multiplication as
well as addition, and therefore would be partially unused in
a distributed summation, floating point multiplication is less
complicated to implement than addition [37]. Verification is
non-trivial for even a circuit of this size and complexity,
and this implementation is among the simplest available.
For future Infiniband 4x EDR interface theoretical peak
bandwidth, operands would need to be summed at a rate
of 100 Gigabits/sec. This would require a 32-bit carry-
lookahead adder operating at 0.6 GHz (very modest clock
rate). Operating as a ripple-carry, this would require 66
cycles to graduate a result, and consume about 380 gates
for the adder (a negligible amount of area and power) [38].

For reduction operations with both local and network-
wide computations, local computations can either use sorting
or recursion techniques, or use wide fixed-point representa-
tions with dedicated hardware support. Alternatively, local
computations can be performed in the NICs using the BigInt
format without using the local processor. However, because
this option would transfer all local operands to the NIC
instead of just the partial sum, it stresses the processor–NIC
interconnect. Network-wide computations are performed in
the NIC with BigInts, because sorting or recursion tech-
niques would produce an excessive amount of system-wide
data movement. This way, there is no precision loss in both
local and distributed operations. Local computations can be
performed in advance of the arrival of packets with partial
sums such that when the reduction operation function call is
made, the result (a single partial sum number) can be stored
in the NIC in anticipation of other partial sums (operands).

IV. METHODOLOGY

We evaluate the impact of BigInts on computation pre-
cision and performance of summations and MPI reduction
operations [39] with millions to billions of operands. We first

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5"

Figure 4: One benchmark is calculating the arc length of
this highly irregular function (g(x)).

evaluate the numerical behavior and error accumulation of
techniques applicable to network-wide operations, namely
doubles, long doubles, DDs and BigInts, using serial test
cases on large numbers of operands. Next, we evaluate the
performance of MPI reduce() operations on payload sizes
required for these different extended precision implementa-
tions. Lastly, we estimate the impact of embedding BigInt
summations into the NIC for future interconnect designs.

Numerical stability calculations are done in a single
processor as they are designed entirely to understand the
numerical behavior of different approaches. Each trial uses
exclusively operands and operations of the appropriate pre-
cision. In our architecture, long double-precision variables
are 80 bits long, where 1 bit is the sign, 15 bits are for the
exponent, and 64 bits for the mantissa [40]. We report the
error of each precision type against BigInt as a percentage.
We also perform a bitwise comparison of the mantissa of
each precision type against BigInt and report the first bit
that differs. Due to the different representation with two
double-precision variables that DDs use, we do not report
bit-wise mantissa comparison results for DDs. Finally, we
perform a comparison of decimal digits of each variable in
decimal form and report the position of the first decimal
digit that differs. For example, the numbers 2.54 and 2.58
differ in the second decimal digit. For both decimal and bit
comparisons, a value of minus one means that there is no
difference, whereas a value of 0 means that the integer parts
of the numbers differ in the decimal comparison.

Initially, we perform a composite summation of numerous
equal small numbers to a large number. We vary the large
and small numbers as well as the number of operands to
illustrate precision loss as a function of summation size and
operand values. We then show results for a funarc calculation
that attempts to calculate the arc length of the irregular func-
tion g(x) = x +

∑

0≤k≤10
2−k sin(2kx), over the interval

(0, π). The task here is to sum
√

h2 + (g(xk + h)− g(h))2

for xk ∈ (0, π) divided into n subintervals, where n =
10000000, so that h = π/10000000 and xk = kh. The
function is shown in Figure 4. This function highly irregular,
so that the arc length calculation will sum many highly



varying quantities. If the limit on the summation were infin-
ity instead of 10, the resulting function, while continuous
and innocuous-looking, is in fact non-rectifiable—it does
not have a finite arc length. In any event, it was chosen
as a useful example for demonstrating round-off error when
adding a large number of varying terms. Finally, to clearly
show the effect of the limited mantissa bits, we use the
geometric series:

k
∑

i=0

2−i =
1 · (1− 2−k)

1− 1

2

= 2 · (1− 2−k)

For performance results, we conduct communication and
summation evaluations. To evaluate communication delay,
we conduct 50000 MPI reduction operations for each pre-
cision type in NERSC’s Hopper, which is a Cray XE6
cluster [41]. Because of the small payload of packets, we
configure the NICs to use the eager message path to the
processor [42] to avoid the latency of block transfers.

V. EVALUATION

A. Composite Summation

The precision loss in the first experiment is illustrated in
Figure 5. Since each summation produces an error and the
small numbers (10−8) we add to the large number (108) are
equal, the error grows linearly with the number of operands.
Also, the errors introduced by each variable type differ in
orders of magnitude compared to BigInt, because doubles,
long doubles and DDs have different levels of precision.
DD variables introduce approximately 10−16 less error than
doubles. For better illustration, Figure 6 (left and center)
compares bits and decimal digits with the BigInt result. As
shown, double and long double variables have a large error,
whereas the error for DDs is still noticeable.

Figure 6 (right) shows results for a summation where
the large number (1012) is large enough such that double-
and long double-precision variables drop the small numbers
entirely. For those cases, summation is ineffective because
the result equals the large number. As shown, the first
mantissa bit of difference for doubles compared to BigInts
is nearly the total bits in the mantissa of a double-precision
variable (53), which shows that the summation affects bits
that are beyond what the double-precision variable can hold.
In contrast, BigInt contains all such bits. Compared to
adding to a large number of 10−8, the precision for DDs
is also lower.

B. Computing Arc Length of an Irregular Function

To illustrate the precision loss in a realistic highly ir-
regular mathematical computation, we use the funarc code
on g(x), described in Section IV. In this experiment, the
numbers are close enough such that operands are not fully
discarded. The precision loss does not increase linearly
with the number of operands because the function is highly

variable. Figure 7 illustrates the percentage error compared
to BigInt, and Figure 8 shows the bit and decimal digit
comparisons. As shown, DDs still introduce noticeable error.

C. Geometric Series

The results for the geometric series are shown in Figure 9.
Even though for i infinite the geometric series converges to
the number 2, for natural values of i it should converge to
less than 2. However, due to the limited number of mantissa
bits, double variables report equal to 2 for i > 53 and long
doubles for i > 64. DDs are accurate until i > 106. Beyond
that, the second double-precision variable, which denotes
the error contained in the first double-precision variable in
DDs [14], cannot accurately capture the accumulated error
because the error exceeds its 53 available mantissa bits. In
contrast, BigInts are accurate until i > 1024. If i ≤ 1024,
BigInt contains an array of consecutive asserted bits with the
most significant in position 1024 and the least significant in
position 1024− i.

D. Performance Evaluation

To evaluate the performance impact of BigInts in dis-
tributed summations we use MPI reductions and measure
communication time using MPI constructs. MPI reductions
are typically used for summations performed on operands
distributed across a large-scale system [32], [34]. In such
operations, communication progresses in a tree-like fashion
where nodes in each level of the tree sum the operands they
receive with their local operands, and pass the partial sum
(a single number) to the next level [33].

Figure 10 shows the time spent in communication. BigInt
increases communication time by approximately 35% com-
pared to doubles, but only 2%-14% compared to DDs. Even
though BigInts contain 2101 bits and therefore are 16×
larger than 128-bit DDs, for such small sizes communication
is latency-bound instead of throughput-bound. Therefore,
BigInt does not increase communication time significantly
because the additional bits lead to a minor increase since
packet headers and fixed (zero-load) delays in the net-
work and NICs dominate for small transfers. Our results
are confirmed by past work [21] which showed that the
communication delay for messages with payloads containing
double-word, quad-word, and double quad-word variables is
identical and approximately 12 µs for up to 512 bytes, which
is a larger payload size than BigInts (256 bytes).

We then estimate computation time. In modern Intel pro-
cessors, double-precision additions performed on dedicated
FPUs require 5 cycles [27]. Even though the peak rate for
FPUs is 2 flops/cycle, summation throughput is limited by
the FPU pipeline latency. Increased-precision representations
are considerably slower. For example, as discussed in Sec-
tion II, DD addition requires up to 20 operations. Arbitrary-
precision libraries use more complex representations and



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
10

0

1

x 10
−4

Number of operands

P
re

c
is

io
n

 e
rr

o
r 

(p
e

rc
e

n
ta

g
e

)

Error for composite benchmarks

 

 

Double

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
10

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−7

Number of operands

P
re

c
is

io
n

 e
rr

o
r 

(p
e

rc
e

n
ta

g
e

)

Error for composite benchmarks

 

 

Long double

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
10

0

1

2

3

4

5

6

7

8

9
x 10

−21

Number of operands

P
re

c
is

io
n

 e
rr

o
r 

(p
e

rc
e

n
ta

g
e

)

Error for composite benchmarks

 

 

Double double

Figure 5: Adding operands with a value of 10−8 to a variable with the value of 108. BigInt equals the analytical result.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
10

0

10

20

30

40

50

60

70

80

Number of operands

F
ir
s
t 

m
a

n
ti
s
s
a

 b
it
 o

f 
d

if
fe

re
n

c
e

First mantissa bit of difference composite

 

 

Double

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
10

0

2

4

6

8

10

12

14

16

18

20

Number of operands

F
ir
s
t 

d
e

c
im

a
l 
d

ig
it
 o

f 
d

if
fe

re
n

c
e

First decimal digit of difference composite summation

 

 

Double

Long double

Double double

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
10

0

10

20

30

40

50

60

70

80

Number of operands

F
ir
s
t 

m
a

n
ti
s
s
a

 b
it
 o

f 
d

if
fe

re
n

c
e

First mantissa bit of difference composite

 

 

Double

Figure 6: Adding operands with a value of 10−8 to a variable with the value of 108 (left and center) or 1012 (right). In the
center Figure, the lines for double and long double overlap on zero because the integer part also differs.

0 0.5 1 1.5 2 2.5 3

x 10
10

0

1

2

3

4

5

6

7

8

9
x 10

−10

Number of operands

P
re

c
is

io
n

 e
rr

o
r 

(p
e

rc
e

n
ta

g
e

)

Error for function arc length

 

 

Double

0 0.5 1 1.5 2 2.5 3

x 10
10

0

1

2

3

4

5

6

7
x 10

−13

Number of operands

P
re

c
is

io
n

 e
rr

o
r 

(p
e

rc
e

n
ta

g
e

)

Error for function arc length

 

 

Long double

0 0.5 1 1.5 2 2.5 3

x 10
10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−14

Number of operands

P
re

c
is

io
n

 e
rr

o
r 

(p
e

rc
e

n
ta

g
e

)

Error for function arc length

 

 

Double double

Figure 7: Precision error compared to BigInt for computing the arch length of g(x) with a varying number of operands.

therefore are even slower. BigInts can perform these op-
erations at a rate that is comparable to DDs (20 cycles) only
with an 106-bit integer adder, which can be easily integrated
in modern NICs [20]. Computing in NICs avoids poten-
tially large context switching or wake up delays for local
processors, as well as data transfer latencies between the
NIC and the processor that are typically significantly longer
than the few cycles to perform integer addition. Context
switching requires µs [43], while waking up processors from

deep sleep may require seconds [44], [45]. So the handful
additional cycles required for extended precision and BigInts
are negligible compared to the network time. As discussed
in Section III-B, the complexity of integer adders is an
order of magnitude less than FPUs. Therefore, compared
to FPUs, BigInt summations are feasible to perform at line
rate using existing technology and consuming an order of
magnitude fewer gates, using only integer adder components
in a pipelined ripple-carry fashion. Therefore, BigInts enable



0 0.5 1 1.5 2 2.5 3

x 10
10

0

10

20

30

40

50

60

70

80

Number of operands

F
ir
s
t 
m

a
n
ti
s
s
a
 b

it
 o

f 
d
if
fe

re
n
c
e

First mantissa bit of difference funarc

 

 

Double

0 0.5 1 1.5 2 2.5 3

x 10
10

0

2

4

6

8

10

12

14

16

18

20

Number of operands

F
ir
s
t 
d
e
c
im

a
l 
d
ig

it
 o

f 
d
if
fe

re
n
c
e

First decimal digit of difference funarc

 

 

Double

Long double

Double double

Figure 8: Bit and decimal digit comparison for computing the arch length of g(x) with a varying number of operands.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Number of operands (index i of the summation)

F
ir
s
t 
m

a
n
ti
s
s
a
 b

it
 o

f 
d
if
fe

re
n
c
e

First mantissa bit of difference geometric sum

 

 

Double

Long double

Figure 9: Bit comparison for the geometric series. DDs are
not shown due to their different internal representation.

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

Number of nodes

R
e

a
l 
ti
m

e
 (

s
e

c
o

n
d

s
)

Distributed MPI reduce communication time

 

 

Double

Long double

Double double

Big Int

Figure 10: Communication time for an MPI reduce opera-
tion.

reduction operations to complete in comparable time as
operations with double-precision variables, while providing
no precision loss in the same number space with exact
encoding for every real number in that space.

VI. CONCLUSION

This paper makes the case that using a very wide integer,
which we call BigInt, is well-suited for distributed oper-
ations. BigInts encode the same number space as double-
precision variables but have a simple enough format to
perform operations such as additions in comparable time
as double-precision variables with dedicated FPUs, using
inexpensive hardware integer adders or programmable logic
found in modern NICs. BigInts enable distributed reduction
operations in large-scale systems with no precision or per-
formance loss. Computing in NICs avoids the energy and
latency costs of NIC to processor communication, as well as
context switching or waking up the processor. Computing in
NICs is only achievable by past work with double-precision
variables due to the complex internal structures and system-
wide data movement introduced by increased- or arbitrary-
precision software libraries and algorithms.

DISCLAIMER

This document was prepared as an account of work spon-
sored by the United States Government. While this document
is believed to contain correct information, neither the United
States Government nor any agency thereof, nor the Regents
of the University of California, nor any of their employees,
makes any warranty, express or implied, or assumes any
legal responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name,
trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency
thereof, or the Regents of the University of California.
The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof or the Regents of the
University of California.



REFERENCES

[1] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technol-
ogy challenges,” in 9th international conference on High performance

computing for computational science, ser. VECPAR’10, 2011.
[2] D. H. Bailey, “High-precision floating-point arithmetic in scientific

computation,” Comp. in Science Engineering, vol. 7, no. 3, 2005.
[3] D. H. Bailey, R. Barrio, and J. M. Borwein, “High-precision com-

putation: Mathematical physics and dynamics,” Applied Mathematics

and Computation, vol. 218, no. 20, 2012.
[4] K. R. Ghazi, V. Lefevre, P. Theveny, and P. Zimmermann, “Why

and how to use arbitrary precision,” Computing in Science and

Engineering, vol. 12, no. 3, p. 5, 2010.
[5] E. Allen, J. Burns, D. Gilliam, J. Hill, and V. Shubov, “The impact

of finite precision arithmetic and sensitivity on the numerical solu-
tion of partial differential equations,” Mathematical and Computer

Modelling, vol. 35, no. 11-12, 2002.
[6] J. M. Chesneaux, S. Graillat, and F. Jézéquel, “Rounding errors,” in

Wiley Encyclopedia of Computer Science and Engineering, 2008.
[7] Y. He and C. H. Q. Ding, “Using accurate arithmetics to improve

numerical reproducibility and stability in parallel applications,” in
14th international conference on Supercomputing, ser. ICS ’00, 2000.

[8] J. Demmel, I. Dumitriu, O. Holtz, and P. Koev, “Accurate and effi-
cient expression evaluation and linear algebra,” Computing Research

Reporitory, vol. abs/0712.4027, 2007.
[9] J. M. McNamee, “A comparison of methods for accurate summation,”

ACM SIGSAM Bulletin, vol. 38, no. 1, 2004.
[10] J. Demmel and H. D. Nguyen, “Fast reproducible floating-point

summation,” in 21st IEEE Symposium on Computer Arithmetic, 2013.
[11] J. Demmel, B. Diament, and G. Malajovich, “On the complexity of

computing error bounds,” Foundations of Computational Mathemat-

ics, vol. 1, no. 1, pp. 101–125, 2001.
[12] N. J. Higham, “The accuracy of floating point summation,” SIAM

Journal on Scientific Computing, vol. 14, 1993.
[13] S. Graillat and V. Ménissier-Morain, “Accurate summation, dot prod-

uct and polynomial evaluation in complex floating point arithmetic,”
Information and Computation, no. 216, pp. 57–71, 2012.

[14] Y. Hida, X. Li, and D. H. Bailey, “Library for double-
double and quad-double arithmetic,” http://web.mit.edu/tabbott/
Public/quaddouble-debian/qd-2.3.4-old/docs/qd.pdf/, 2007.

[15] S. Siegel and J. Wolff von Gudenberg, “A long accumulator like a
carry-save adder,” Computing, vol. 94, no. 2-4, pp. 203–213, 2012.

[16] A. Chervenak et al., “Data placement for scientific applications in
distributed environments,” in 8th IEEE/ACM International Conference

on Grid Computing, ser. GRID ’07, 2007.
[17] A. Vishnu, M. Koop, A. Moody, A. Mamidala, S. Narravula, and

D. Panda, “Hot-spot avoidance with multi-pathing over InfiniBand: An
MPI perspective,” in 7th IEEE International Symposium on Cluster

Computing and the Grid, ser. CCGRID ’07, 2007.
[18] N. J. Boden et al., “Myrinet: A gigabit-per-second local area network,”

IEEE Micro, vol. 15, no. 1, pp. 29–36, 1995.
[19] D. Buntinas and D. K. Panda, “NIC-based reduction in Myrinet

Clusters: Is it beneficial?” in SAN-02 Workshop, 2003.
[20] F. Petrini, A. Moody, J. Fernandez, E. Frachtenberg, and D. K.

Panda, “NIC-based reduction algorithms for large-scale clusters,”
International Journal on High Performance Computer Networks,
vol. 4, no. 3/4, pp. 122–136, 2006.

[21] A. Vishnu, M. ten Bruggencate, and R. Olson, “Evaluating the poten-
tial of Cray Gemini interconnect for PGAS communication runtime
systems,” in 19th IEEE Annual Symposium on High Performance

Interconnects, ser. HOTI ’11, 2011.
[22] U. Kulisch and V. Snyder, “The exact dot product as basic tool for

long interval arithmetic,” Computing, vol. 91, no. 3, 2011.
[23] U. Kulisch, “Very fast and exact accumulation of products,” Comput-

ing, vol. 91, no. 4, pp. 397–405, 2011.
[24] “IEEE standard for floating-point arithmetic,” ANSI/IEEE Std 754-

2008.
[25] T.-J. Kwon, J. Sondeen, and J. Draper, “Design trade-offs in floating-

point unit implementation for embedded and processing-in-memory
systems,” in IEEE International Symposium on Circuits and Systems,
ser. ISCAS ’05, 2005.

[26] X. Hong, W. Chongyang, and Y. Jiangyu, “Analysis and research
of floating-point exceptions,” in 2nd International Conference on

Information Science and Engineering, ser. ICISE ’10, 2010.
[27] “Intel 64 and IA-32 architectures developer’s manual: Vol. 1,” Intel

Corporation, March 2012.
[28] D. H. Bailey, Y. Hida, X. S. Li, and O. Thompson, “ARPREC:

An arbitrary precision computation package,” Lawrence Berkeley
National Laboratory, Tech. Rep., 2002.

[29] T. Granlund and the GMP development team, GNU MP: The GNU

Multiple Precision Arithmetic Library, 5th ed., 2012.
[30] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmer-

mann, “MPFR: A multiple-precision binary floating-point library with
correct rounding,” ACM Transanctions on Mathematical Softwware,
vol. 33, no. 2, 2007.

[31] V. A. CarreÃśo and P. S. Miner, “Specification of the ieee-854
floating-point standard in hol and pvs,” 1995.

[32] H. Ritzdorf and J. Traff, “Collective operations in NEC’s high-
performance MPI libraries,” in International Parallel and Distributed

Processing Symposium, ser. IPDPS ’06, 2006.
[33] T. Hoefler and J. Traff, “Sparse collective operations for MPI,” in 29th

IEEE International Symposium on Parallel Distributed Processing,
ser. IPDPS ’09, 2009.

[34] T. Kielmann, R. E. H. Hofman, H. E. Bal, A. Plaat, and R. A. E.
Bhoedjang, “MPI’s reduction operations in clustered wide area sys-
tems,” in Message Passing Interface Developer’s and User’s Confer-

ence, ser. MPIFC ’99, 1999.
[35] F. Petrini, W.-c. Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The

quadrics network (QsNet): High-performance clustering technology,”
in Proceedings of the The Ninth Symposium on High Performance

Interconnects, ser. HOTI ’01, 2001, pp. 125–130.
[36] J. Krueger et al., “Hardware/software co-design for energy-efficient

seismic modeling,” in Conference on High Performance Computing

Networking, Storage and Analysis, 2011.
[37] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna, “Analysis of high-

performance floating-point arithmetic on FPGAs,” in 18th IEEE

International Parallel and Distributed Processing Symposium, ser.
IPDPS ’04, 2004.

[38] R. H. Katz, Contemporary logic design. Benjamin-Cummings
Publishing Co., Inc., 1993.

[39] M. P. I. Forum, “MPI: A message-passing interface standard. ver-
sion 3.0,” http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf/,
2012.

[40] “IEEE standard for binary floating-point arithmetic,” ANSI/IEEE Std

754-1985.
[41] K. Antypas, “The Hopper XE6 system: Delivering high end comput-

ing to the nation’s science and research community,” Cray Quarterly
Review, Tech. Rep., April 2011.

[42] H. Pritchard, I. Gorodetsky, and D. Buntinas, “A uGNI-based
MPICH2 nemesis network module for the Cray XE,” in 18th Eu-

ropean MPI Users’ Group conference on Recent advances in the

message passing interface, ser. EuroMPI’11, 2011.
[43] D. Tsafrir, “The context-switch overhead inflicted by hardware in-

terrupts (and the enigma of do-nothing loops),” in Experimental

computer science on Experimental computer science, ser. ECS ’07.
USENIX Association, 2007.

[44] S. Damaraju et al., “A 22nm IA multi-CPU and GPU system-on-chip,”
in 59th IEEE International Solid-State Circuits Conference Digest of

Technical Papers, ser. ISSCC ’12, 2012.
[45] L. Case, “Inside Intel’s Haswell CPU: Better performance, all-day bat-

tery,” http://www.pcworld.com/article/262241/inside_intels_haswell_
cpu_better_performance_all_day_battery.html/, 2012.


